Vector-soliton storage and three-pulse-area theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum computing based on vibrational eigenstates: pulse area theorem analysis.

In a recent paper [D. Babikov, J. Chem. Phys. 121, 7577 (2004)], quantum optimal control theory was applied to analyze the accuracy of quantum gates in a quantum computer based on molecular vibrational eigenstates. The effects of the anharmonicity parameter of the molecule, the target time of the pulse, and the penalty function on the accuracy of the qubit transformations were investigated. We ...

متن کامل

Fan-KKM Theorem in Minimal Vector Spaces and its Applications

In this paper, after reviewing some results in minimal space, some new results in this setting are given. We prove a generalized form of the Fan-KKM typetheorem in minimal vector spaces. As some applications, the open type of matching theorem and generalized form of the classical KKM theorem in minimal vector spaces are given.

متن کامل

Vector ultrametric spaces and a fixed point theorem for correspondences

In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.

متن کامل

Counterpropagating dipole-mode vector soliton.

We experimentally observed a counterpropagating dipole-mode vector soliton in a photorefractive SBN:60Ce crystal. We investigated the transient formation dynamics and show that the formation process differs significantly from the copropagating geometry. The experimental results are compared with fully anisotropic numerical simulations and show good qualitative agreement.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 2016

ISSN: 2469-9926,2469-9934

DOI: 10.1103/physreva.94.013820